ALZHEIMER'S QUASSOCIATION ALZHEIMER'S ASSOCIATION INTERNATIONAL CONFERENCE® JULY 16-20 > AMSTERDAM, NETHERLANDS, AND ONLINE

ISTAART Neuroimaging PIA THE BASICS OF NEUROIMAGING SEMINAR SERIES

ALZHEIMER'S R ASSOCIATION

BASICS OF NEUROIMAGING: FUNCTIONAL MRI

Luigi Lorenzini, PhD student Amsterdam UMC

ALZHEIMER'S PL ASSOCIATION

BASICS OF NEUROIMAGING

The Basics of Neuroimaging

Data Structure and Formats

Moderator: Alexis Moscoso Rial, PhD

Speaker: Ludovica Griffanti, PhD

Wednesday, April 5, 9 a.m. Cl

Available on demand very soon!

The Basics of

Neuroimaging

Structural Magnetic Resonance Imaging (MRI)

Moderator: Tavia Evans, PhD

Erasmus MC, Netherlands

Panelists: David Cash, PhD; University College London, United Kingdom

Friday, April 14, 9 a.m. CT

The Basics of Neuroimaging

Positron Emission Tomography (PET)

Moderator: Lyduine Collij, Ph.D.

Panelists: Tobey Betthauser, Ph.I

Wednesday, April 19, 12 p.m. Cl

The Basics of Neuroimaging

Diffusion-Weighted Imaging (DWI)

Moderator: Tom Veale, Ph.D.

Panelists: Alexa Pichet Binette, Ph.D

Friday, April 21, 9 a.m. CT

ADD MINE

By the end of this session, you should be able to:

- Understand and discuss fMRI principles and measurements
- Outline the basic preprocessing steps needed fMRI data and typical issues
- Describe the relevance and current clinical application of fMRI

ALZHEIMER'S R ASSOCIATION

Functional MRI: What are we measuring?

ALZHEIMER'S N ASSOCIATION ALL MEASURING BRAIN ACTIVITY: FMRI ET AL.

fMRI

ASL

EEG

BOLD signal

Cerebral blood flow (CBF)

Electrical Signals

ALZHEIMER'S RUASSOCIATION' AAIC223 FMRI IMAGES: A MOVIE OF THE BRAIN

Structural MRI

288	27	38	364	621
264	21	97	500	640
271	22	133	543	647
312	28	113		649
390	53	58	424	635

ALZHEIMER'S O ASSOCIATION AND 23 FMRI CONCEPTS: THE BOLD SIGNAL

A. Less neural activity B. More neural activity and vasoconstriction and vasodilation

Blood oxygen level dependent (BOLD) signal

- Active neurons require oxygen! (action potentials are expensive)
- Blood levels (CBF) increase, capillaries dilate, to supply oxygen and glucose to activated neurons
- Unbalance between oxygenated and deoxygenated hemoglobin
 → BOLD
- The deoxygenated hemoglobin disturbs the local magnetic field
- Higher BOLD \rightarrow More oxygenated hemoglobin \rightarrow High activity

BOLD is an indirect measure of brain activation

ALZHEIMER'S () ASSOCIATION ALZHEIMER'S () ASSOCIATION FMRI CONCEPTS: THE HEMODYNAMIC RESPONSE

The hemodynamic response function (HRF)

- "Ideal" BOLD response function
- Peak around 6 seconds, take ~20 to baseline
- Low temporal resolution, difficult to know the exact time of neuronal changes
- However, good for image acquisition (no need to acquire 1 image every millisecond)

ALZHEIMER'S R ASSOCIATION

Functional MRI: Basic Pre-Processing

ALZHEIMER'S RUASSOCIATION' WHY PRE-PROCESSING AND QC OF FMRI

1. fMRI data are prone to a number of artifacts and sources of variability

2. Raw images are not usable for direct inspection or statistical analysis

Pre-processing

Extreme Pre-processing

O
 Solution
 Solutio

ALZHEIMER'S N ASSOCIATION ALZHEIMER'S N ASSOCIATION WHY PRE-PROCESSING AND QC OF FMRI

1. fMRI data are prone to a number of artifacts and sources of variability

2. Raw images are not usable for direct inspection or statistical analysis

What a dead salmon tells us about fMRI pre-processing and analysis

"shown a series of photographs depicting human individuals in social situations. The salmon was asked to determine what emotion the individual in the photo must have been experiencing."

ALZHEIMER'S N ASSOCIATION" ALZHEIMER'S N ASSOCIATION PRE-PROCESSING: WHAT AND HOW ?

What

A series of steps used to

1. Remove unwanted signal fluctuations and artefacts

Distortion

Correction

- 2. Clean desired effects
- 3. Standardize data
- Before Statistical analysis

ALZHEIMER'S RUASSOCIATION" AAAI 23 MOTION CORRECTION

Why

- As for real pictures, a moving target will look blurry
- We measures from moving voxels (different across the session)
- Introduce confounds (e.g. in response to a stimulus/ whole-brain correlations) that are stronger than physiological changes

How

- Align all the volumes from a timeseries with a reference volume
- Usually, the reference volume is the first, middle or last of the TS
- Use <u>rigid body transformation (6</u> DOF)
- Iterative process of finding the best alignment between 2 volumes (cost function)

rigid body = 6DOF = 3 rotations + 3 translations

From https://andysbrainbook.readthedocs.io/

ALZHEIMER'S RUASSOCIATION" AAAI 23 MOTION CORRECTION

Why

- As for real pictures, a moving target will look blurry
- We measures from moving voxels (different across the session)
- Introduce confounds (e.g. in response to a stimulus/ whole-brain correlations) that are stronger than physiological changes

From https://andysbrainbook.readthedocs.io/

How

- Align all the volumes from a timeseries with a reference volume
- Usually, the reference volume is the first, middle or last of the TS
- Use <u>rigid body transformation (6</u> DOF)
- Iterative process of finding the best alignment between 2 volumes (cost function)

rigid body = 6DOF = 3 rotations + 3 translations

ALZHEIMER'S () ASSOCIATION ALZHEIMER'S () ASSOCIATION BOTION CORRECTION: MOTION PARAMETERS

ALZHEIMER'S N ASSOCIATION ALZHEIMER'S N ASSOCIATION MOTION ARTIFACTS IN THE RESULTS

Kober, T., Gruetter, R., & Krueger, G. (2012). Prospective and retrospective motion correction in diffusion magnetic resonance imaging of the human brain. *Neuroimage*, 59(1), 389-398.

ALZHEIMER'S CLASSOCIATION ALZHEIMER'S CLASSOCIATION STANDARD SPACE MAPPING

Why

- Differences in brain size and shape exist between different individuals.
- For group analysis, we need voxels between different brains to correspond
- Registration or Normalization or
 Standard Space Mapping

How

- Affine Transformation, similar to rigid body but 12 DOF (allows zooms and shears)
- We register to the anatomical T1 (coregistration), previously registered to MNI space (normalization)
- Then we can apply the T1 -> MNI transformation to our fMRI

ALZHEIMER'S REASSOCIATION ALZHEIMER'S REASSOCIATION SPATIAL SMOOTHING

- Smooth functional data = replace the value at each voxel with a weighted average of that voxel's neighbors
- Lower resolution? Yes. But also, <u>greater signal to</u> <u>noise</u>!
- High frequencies of the signal are removed while enhancing low frequencies
- Gaussian kernel of specific width (FWHM) determines the amount of smoothing

ALZHEIMER'S RUASSOCIATION' TEMPORAL FILTERING (SMOOTHING)

- Remove noise based on its frequency
- Low-frequency drifts: due to both physiological and physical (scanner-related) noise
- Linear and non-linear drifts
- Voxel's timecourses represented as frequency domain (e.g. Fourier transform), low drifts are set to 0

- Hardware imperfections
- Heating of components

Examples of Physiological Noise:

- Cardiac pulsations
- Respiratory Cycle

ALZHEIMER'S OLASSOCIATION ALZHEIMER'S OLASSOCIATION FILTERING OF PHYSIOLOGICAL NOISE: STATISTICAL APPROACHES

GLM approach

ICA approach

ALZHEIMER'S R ASSOCIATION

Functional MRI: Derived data and applications

ALZHEIMER'S N ASSOCIATION ALZHEIMER'S N ASSOCIATION FMRI: CURRENT APPLICATIONS

Functional Localization

Brain Networks

Meunier, D. et al (2019)

ALZHEIMER'S RUSSOCIATION ALZHEIMER'S RUNCTIONAL ALTERATIONS IN AD

Palmqvist, et a. (2017).

Increased FC

Network failure cascade model

Jones, D. et al. (2016).

Decreased FC

Lorenzini et al. (2022)

ALZHEIMER'S RUASSOCIATION

SPREADING OF PATHOLOGICAL PROTEINS ACROSS FUNCTIONAL CONNECTIONS

Franzmeier, N et al (2020).

AAC>23 POP QUIZ!

Question 1

fMRI motion correction works by:

- a) Aligning volumes between two fMRI time series
- b) Aligning volumes within on fMRI time series
- c) Registering the fMRI scan to a structural scan

ALZHEIMER'S N ASSOCIATION

Question 2

Spatial smoothing:

- a) Decrease signal to noise ratio
- b) Has no effect on signal to noise ratio
- c) Increase signal to noise ratio

Question 3

Which one of these statements is **false** about BOLD signal:

- a) It's a measure of neuronal electrical activity
- b) It's based on the unbalance between oxygenated and

deoxygenated hemoglobin

c) Measures brain hemodynamic response

ALZHEIMER'S QASSOCIATION ALZHEIMER'S ASSOCIATION INTERNATIONAL CONFERENCE® JULY 16-20 > AMSTERDAM, NETHERLANDS, AND ONLINE

Thank You!

Luigi Lorenzini, PhD Candidate Amsterdam UMC, Department of Radiology and Nuclear Medicine I.lorenzini@amsterdamumc.nl