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By the end of this session, you should be able to:
• Understand the acquisition and data structure of diffusion 

MRI
• Outline the basic preprocessing steps needed for diffusion 

MRI data and how to look for issues in the data and 
processing

• Describe the main outputs from diffusion tensor models

GOALS



NEUROIMAGING DATA ANALYSIS: 
A BLUEPRINT FOR DIFFUSION MRI

1. Data acquisition

2. Data preprocessing

3. Single-subject 
analysis

4. Group-level 
analysis

5. Statistical inference

Aim: obtain good quality and consistent 
data

Aim: Reduce noise and prepare data 
for further analyses

Aim: Obtain measure of interest for 
each subject (often an image)

Aim: Compare single-subject results 
across groups

Aim: test reliability of results and 
generalizability to the general 
population

Blueprint courtesy Ludovica Griffanti, University of Oxford



DIFFUSION IMAGING: KEY PRINCIPLES

1. Data acquisition

Free diffusion – Isotropy (in CSF) Restricted diffusion – Anisotropy (in WM)

Descoteaux, HARDI Chapter in Wiley Encyclopedia, 2015

Basic principles of diffusion:

We are measuring the movement of water molecules along certain directions in the brain.



1. Data acquisition

Orientation is key in DWI. We measure the diffusion of 
water molecules along different directions

The diffusion-weighting signal varies according to the 
gradient direction in which it measures the image. If the 
gradient direction is aligned with the underlying white matter 
structure, the signal in the image is attenuated. It is weaker. 

On each image 
a different 

direction (x,y,z) 
is applied

DIFFUSION IMAGING: KEY PRINCIPLES



1. Data acquisition

DIFFUSION IMAGING: KEY PRINCIPLES

Another key aspect is the b-value, which is related to the strength and duration of the 
gradients used to generate diffusion-weighted images. 

Descoteaux, HARDI Chapter in Wiley Encyclopedia, 2015

Higher b-values = 
“longer time to let 

molecules
diffuse”

b=1000 is 
standard is most 
basic research 
MRI sequence



1. Data acquisition

DIFFUSION IMAGING: KEY PRINCIPLES
b-value = 0

No gradient applied



1. Data acquisition

DIFFUSION IMAGING: KEY PRINCIPLES
b-value = 1000

Gradient in the x-direction
Left-Right

Gradient in the y-direction
Anterior-Posterior



1. Data acquisition

DIFFUSION IMAGING:
DATA ORGANIZATION

1.b Data organization
T1-Weighted

April 14
webinar

https://bids.neuroimaging.io



1. Data acquisition

DIFFUSION IMAGING:
DATA ORGANIZATION

1.b Data organization
https://bids.neuroimaging.io

DWI scan 

...

4-D file where each image has a specific diffusion 
gradient and orientation



1. Data acquisition

DIFFUSION IMAGING:
DATA ORGANIZATION

1.b Data organization
https://bids.neuroimaging.io

DWI scan 

...

Vectors of length equal to the total number of 
directions of the diffusion scan

bval

0
1000
1000
…
…

1000

bvec

0, 0, 0
0.999, -0.003, -0.003
0.001, 0.999, -0.003
…

…

0.265, 0.960, 0.082

b-values Orientation (x,y,z)



DIFFUSION IMAGING:
PREPROCESSING

1. Data acquisition

2. Data preprocessing

Key steps:

-Correcting for susceptibility-induced 
distortions

- Correcting for eddy currents and 
movement



DIFFUSION IMAGING:
SUSCEPTIBILITY-INDUCED ARTEFACTS

1. Data acquisition

2. Data preprocessing Some parts of the brain can 
appear distorted depending on 
their magnetic properties. 

One common way to correct the 
distortions with DWI data is by 
acquiring a b0 image acquired 
with a different phase-encoding, 
and merging the two types of 
images running TOPUP.

Source: FSL Diffusion Toolbox

Key steps:

-Correcting for susceptibility-induced 
distortions

- Correcting for eddy currents and 
movement

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup


DIFFUSION IMAGING:
SUSCEPTIBILITY-INDUCED ARTEFACTS

1. Data acquisition

2. Data preprocessing

Source: https://www.humanconnectome.org/study/hcp-young-adult/project-protocol/mr-preprocessing

Example from HCP:

Key steps:

-Correcting for susceptibility-induced 
distortions

- Correcting for eddy currents and 
movement Anterior-

Posterior
Posterior-
Anterior

Corrected



DIFFUSION IMAGING:
SUSCEPTIBILITY-INDUCED ARTEFACTS

1. Data acquisition

2. Data preprocessing

Eddy currents arise from electric current due to strong and fast 
changing gradients.

FSL’s eddy is a tool to correct for eddy current-induced 
distortions and movement on the image. It also does outlier 
detection and will replace signal loss by non-parametric 
predictions.

Key steps:

-Correcting for susceptibility-induced 
distortions

- Correcting for eddy currents and 
movement



DIFFUSION IMAGING:
EDDY CURRENTS

1. Data acquisition

2. Data preprocessing

Example of diffusion scan with artefact

Key steps:

-Correcting for susceptibility-induced 
distortions

- Correcting for eddy currents and 
movement



DIFFUSION IMAGING:
EDDY CURRENTS

1. Data acquisition

2. Data preprocessing

After eddy correction

Key steps:

-Correcting for susceptibility-induced 
distortions

- Correcting for eddy currents and 
movement



DIFFUSION IMAGING:
EDDY CURRENTS

1. Data acquisition

2. Data preprocessing

Raw data After eddy correction

Key steps:

-Correcting for susceptibility-induced 
distortions

- Correcting for eddy currents and 
movement

IMPORTANT TO INSPECT YOUR DATA!



FROM THE DIFFUSION SCAN TO SUBJECT-
LEVEL MEASURES

1. Data acquisition

2. Data preprocessing

3. Single-subject analysis How to go from the diffusion scan to representing the 
underlying white matter microstructure organization?



TENSOR TO REPRESENT DIFFUSION 
SIGNAL

-xy -xz y-z

Basser et al, 1994

xy xz yz



DIFFUSION TENSOR MODEL

1. Data acquisition

2. Data preprocessing

3. Single-subject analysis

We can represent the diffusion 
direction in each voxel using 
tensors.

Each tensor is described by 3 
eigen vectors which represent 
diffusivity along 3 axes, with the 
first eigenvalue being the main 
diffusion axis.

Descoteaux, HARDI Chapter in Wiley Encyclopedia, 2015

The diffusion tensor model is the most common way to fit diffusion 
data. It is often a prerequisite for any diffusion imaging analysis 
pipeline.



DIFFUSION TENSOR MODEL

1. Data acquisition

2. Data preprocessing

3. Single-subject analysis

There are key measures that can 
be derived from the diffusion tensor 
model, namely:
• Fractional anisotropy (FA)
• Mean, Radial and Axial 

diffusivities
Descoteaux, HARDI Chapter in Wiley Encyclopedia, 2015



DIFFUSION TENSOR MODEL

1. Data acquisition

2. Data preprocessing

3. Single-subject analysis

There are key measures that can 
be derived from the diffusion tensor 
model, namely:
• Fractional anisotropy (FA)
• Mean, Radial and Axial 

diffusivities
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GROUP-LEVEL ANALYSIS OF DIFFUSION 
DATA

1. Data acquisition

2. Data preprocessing

3. Single-subject analysis

4. Group-level analysis

5. Statistical inference

• Numbers fed into ‘classic’ stats software

• Images require specific stats (usually within imaging software tools)

• Input = Single subject image

• Output = Statistical maps in pseudocolours shows significant voxels, 
overlaid on template.

• Atlases can help interpreting results

Data Structure and Formats - Ludovica Griffanti, University of Oxford



GROUP-LEVEL ANALYSIS OF DIFFUSION 
DATA – NUMERICAL VALUES

1. Data acquisition

2. Data preprocessing

3. Single-subject analysis

4. Group-level analysis

5. Statistical inference

• Numbers fed into ‘classic’ stats software

• Images require specific stats (usually within imaging software tools)

• Input = Single subject image

• Output = Statistical maps in pseudocolours shows significant voxels, 
overlaid on template.

• Atlases can help interpreting results

Data Structure and Formats - Ludovica Griffanti, University of Oxford

JHU DTI Atlas
John Hopkins University

Example: We can extract diffusion measures 
(FA, MD, …) for each participant in known 
white matter tract
Each label corresponds to a white matter tract. 



GROUP-LEVEL ANALYSIS OF DIFFUSION 
DATA – IMAGES AS INPUT

1. Data acquisition

2. Data preprocessing

3. Single-subject analysis

4. Group-level analysis

5. Statistical inference

• Numbers fed into ‘classic’ stats software

• Images require specific stats (usually within imaging software tools)

• Input = Single subject image

• Output = Statistical maps in pseudocolours shows significant voxels, 
overlaid on template.

• Atlases can help interpreting results

Data Structure and Formats - Ludovica Griffanti, University of Oxford



GROUP-LEVEL ANALYSIS OF DIFFUSION 
DATA – IMAGES AS INPUT

1. Data acquisition

2. Data preprocessing

3. Single-subject analysis

4. Group-level analysis

5. Statistical inference

Source: FSL TBSS User Guide

Example: Tract-Based Spatial Statistics

All participants’ FA maps are aligned into a 
common space

A mean FA skeleton which represents all tracts 
common to the group is created. 



GROUP-LEVEL ANALYSIS OF DIFFUSION 
DATA – IMAGES AS INPUT

1. Data acquisition

2. Data preprocessing

3. Single-subject analysis

4. Group-level analysis

5. Statistical inference Signicant voxels that are different 
between two groups, related to a 

variable of interest, etc

Example: Tract-Based Spatial Statistics

All participants’ FA maps are aligned into a 
common space

A mean FA skeleton which represents all tracts 
common to the group is created. 

Each participant's aligned FA data is then 
projected onto this skeleton.

Voxelwise analyses can then be performed 
across participants.

Source: FSL TBSS User Guide



DIFFERENCES IN DIFFUSION MEASURES 
ACROSS THE AD CONTINUUM

(entorhinal, retrosplenial, posterior cingulate, precuneus,
supramarginal, middle temporal), a significant
relationship was found (except for middle temporal WM)
for DR and MD, but not for FA. Employing cross
sectional methods, Stenset et al. (2011) reported higher
DR and lower FA in posterior cingulate for MCI patients
with pathological elevated CSF total Tau levels vs. MCI
patients with non-pathological CSF total Tau levels. This
initial study led us to follow up the sample longitudinally
to explore whether the differences in WM microstructure
were still developing or just preexisting at this stage of
AD progression. We found that patients with
pathological levels of CSF Tau had greater FA
reductions and DR increases in the right cingulum and
SLF relative to controls over time, but this was not
found in MCI patients with non-pathological CSF Tau
levels (Amlien et al., 2013) (see Fig. 2). This can be
interpreted as meaning that those MCI patients with the
highest level of on-going axonal degeneration, as
evidenced by their pathological levels of CSF Tau, also
showed the most rapid deterioration of WM.

While the above studies examined changes in
patients with diagnosed AD or MCI, by the time AD and

MCI have been diagnosed, the disease has already
taken a significant toll on the brain. By studying

Fig. 1. Differences in WM microstructure detected by DTI in MCI patients. Different diffusion metrics can be used to differentiate patients with MCI
from healthy controls. Effects are often especially strong for MD and DR. Data from Amlien et al. (2013).

Fig. 2. Reduction of radial diffusion in MCI. Three-dimensional
rendering of areas of the WM where MCI patients have larger radial
diffusion than age-matched controls. As can easily be seen, effects
are widespread across WM. Data from Amlien et al. (2013).

I. K. Amlien, A. M. Fjell / Neuroscience 276 (2014) 206–215 211
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Amlien et al., Radiology, 2013

FA and MD across the AD spectrum

Fig. 2. Tracts exhibiting significant differences after the Bonferroni correction. (A) Tests showing significant differences are highlighted in orange (higher in
disease group) or blue (lower in disease group). (B) Tracts exhibiting significant differences in FA, with color labeling indicating different significance levels.
Rendered in sagittal (left), coronal (center), and axial (right) views. (C) Tracts showing significant differences in Dr. Abbreviations: SCD, subjective cognitive
decline; CN, cognitively normal; MCI, mild cognitive impairment; FA, fractional anisotropy; MD, mean diffusivity; Da, axial diffusivity; Dr, radial diffusivity;
ICVF, intra-axonal volume fraction; OD, orientation dispersion; P0, zero-displacement probability; cgh_l, left parahippocampal cingulum; cgh_r, right para-
hippocampal cingulum; fma, forceps major; ifo_l, inferior fronto-occipital fasciculi left; ptr_l, left posterior thalamic radiation.

Q. Wen et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 11 (2019) 576-587582

Wen et al., Alz Dem: DADM, 2019

Differences in white matter microstructure across 
diagnostic groups



Zhou et al., 2012; Brier et al., 2014; Jones et al., 2016), the
white matter fibre pathways exhibiting fibre density and
cross-sectional decreases in this cohort included those that
likely form reciprocal connections between DMN regions.
For example, the cingulum bundle is understood to form
connections with and between the anterior medial pre-
frontal cortex, posterior cingulate cortex, and medial tem-
poral lobe (van den Heuvel et al., 2008; Greicius et al.,
2009; Jones et al., 2013a). Additionally, structural disrup-
tion of the uncinate fasciculus would be consistent with
functional disconnections within the ventral DMN;
namely between the ventral medial prefrontal cortex and
hippocampal formation, which this fibre pathway likely
connects (Carmichael and Price, 1995; Wakana et al.,
2004; Petrides and Pandya, 2007). Disconnections within
the genu of the corpus callosum could reflect the observed
functional disruptions between the anterior medial pre-
frontal cortex bilaterally, while the splenium likely contrib-
utes homotopic connections between the posterior inferior
parietal cortices, as well as the posterior cingulate and ret-
rosplenial cortices (De Lacoste et al., 1985; Teipel et al.,
2010). Degeneration of the inferior fronto-occipital fascic-
ulus could also be associated with disconnections to DMN

regions such as the angular gyrus to which it is believed to
connect (Hau et al., 2016). Degeneration to this fibre path-
way may be closely related to vascular pathology and white
matter hyperintensities as has been recently suggested
(Taylor et al., 2017).

The fibre tracts implicated in this present study were also
largely congruent with the regions of white matter abnorm-
alities reported in the extensive body of DTI literature
(Rose et al., 2000; Zhang et al., 2007; Chua et al., 2008;
Nakata et al., 2008; Villain et al., 2008; Damoiseaux et al.,
2009; Acosta-Cabronero et al., 2010; Sexton et al., 2011;
Agosta et al., 2012; Bosch et al., 2012). Moreover, our
whole-brain voxel-based analyses of tensor-derived metrics
were similarly in line with previous studies, with similar
regions of white matter exhibiting decreased fractional
anisotropy and increased mean diffusivity. However, it is
important to highlight in this context that while the fixel-
based results in this study overlap to some extent with re-
gions identified in DTI findings both in the present study
and in previous work, the fixel-based findings offer much
greater anatomical specificity and biological interpretability
by identifying tract-specific differences and accounting for
the substantial atrophic changes that arise in the disease.

Figure 6 Significant tracts in MCI from tract-of-interest analysis comparing diagnostic groups. Left: Mean fibre density and cross-

section (diamonds) and 95% CIs (bars) within tracts of interest are displayed for Alzheimer’s disease (AD) and MCI groups, as a percentage

difference from the healthy control mean, adjusted for age, sex, and intracranial volume. Significant tracts (P5 0.05) are displayed in colour, while

non-significant are shown in grey. Results at the top (above dotted line) correspond to tracts where MCI patients were significantly different from

healthy controls. Right: Tracts are shown in glass brain representations. Top brain shows tracts that were significantly altered in the MCI group,

while bottom brain shows all tracts included in analysis, which all showed significant decrease in patients with Alzheimer’s disease. Tracts are

coloured to correspond with the left panel. Note that tracts were selected from significant fixels in the Alzheimer’s disease group from the whole-

brain FBA. Note also that for the MCI group, only the left posterior cingulum survived Bonferroni correction over the number of tracts tested.

CC = corpus callosum; IFOF = inferior fronto-occipital fasciculus.

896 | BRAIN 2018: 141; 888–902 R. Mito et al.

Downloaded from https://academic.oup.com/brain/article-abstract/141/3/888/4788771
by Inserm/Disc user
on 15 May 2018

Mito et al., Brain, 2018
Jacobs et al., Nature Neuro, 2018

Amyloid
tau

Jagust, Nature Reviews, 2018

There are commonly affected white matter bundles in AD … that 
connect regions where AD pathological proteins accumulate

DIFFUSION MEASURES IN RELATION WITH 
AD PATHOLOGY IN VIVO

Pichet Binette et al, eLife, 2021

uncinate

anterior 
cingulum

posterior 
cingulum

fornix

Associations with AD pathology in 
preclinical AD



BEYOND THE DIFFUSION TENSOR MODEL

• Advanced diffusion model:
There are limitations to the diffusion tensor models, and another commonly 
used model that can better recapitulate crossing fibers are the fiber 
orientation distribution functions (fODF)1.2. Modèles locaux

figure 1.8 – Présentation de différents modèles locaux. En A, une architecture simpli-
fiée représentant des configurations de croisements, courbures et chevauchements afin
de faciliter l’évaluation d’algorithmes liés à l’IRMd. En B, un croisement (agrandi de
A) montrant un champ de tenseurs. Généralement bien aligné avec les populations de
fibres hors croisement (rouge et vert en A), mais sévèrement limité dans le croisement.
On peut observer l’axe principal du tenseur représenté par un vecteur (ligne 3D). En
C, un champ de dODF permettant la représentation de configuration plus complexe,
tel un croisement. En vignette, une seule dODF où la coloration rouge représente une
forte probabilité de diffusion de l’eau, et donc possiblement la présence de population
de fibres. On peut y voir 2 vecteurs, représentant chacun un maxima local de proba-
bilité. En D, un champ de fODF permettant de représenter des croisements à angle
plus aigu qu’un champ de dODF. En vignette, une seule fODF où la coloration rouge
indique une forte probabilité de présence de population de fibres. Les deux maxima
locaux (vecteurs) sont plus faciles à distinguer et leurs angles plus cohérents avec
leurs voisins qu’en C.

19

1.2. Modèles locaux
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Fiber orientation distribution function 
(fODf)Tensor© François Rheault, 2020, PhD thesis



BEYOND THE DIFFUSION TENSOR MODEL

After fitting the data to a 
model, another possibility
is to do tractography.

Tractography is a way to 
"reconstruct" the white 
matter fibers to generate a 
whole-brain tractogram.

• Tractography

We can extract known anatomical white matter 
bundles from the tractogram



BEYOND THE DIFFUSION TENSOR MODEL

• Structural connectivity
After fitting the data to a 
model, another possibility
is to do tractography.

Tractography is a way to 
"reconstruct" the white 
matter fibers to generate a 
whole-brain tractogram.

We can generate a structural connectivity matrix from 
the tractogram

1.6. Conclusion

figure 1.18 – Composantes nécessaires à la construction d’une matrice de connec-
tome, soit un tractogramme (A) et une parcellisation corticale (B). Chaque région
est utilisée pour la sélection de streamlines, en C et D les régions #17, #23 et #34
permettent d’isoler des streamlines. Le nombre de streamlines est ensuite rapporté
dans la matrice (symétrique) aux coordonnées (17, 23) et (17, 34). Une parcellisation
corticale avec, par exemple, 100 étiquettes produira une matrice de connectome de
dimension 100x100.

1.6 Conclusion
Les efforts liés à l’étude du Connectome humain sont de l’ordre de ceux du sé-

quençage du Génome humain. Des centaines de millions de dollars sont investis an-
nuellement par divers gouvernements un peu partout dans le monde pour mieux
comprendre le fonctionnement et l’architecture du cerveau grâce aux techniques de
pointe de l’IRM.

L’ampleur de la tâche force la collaboration entre plusieurs domaines scientifiques.
L’existence de groupes de recherches multidisciplinaires est donc une nécessité. Le
scanneur par résonance magnétique et les séquences d’acquisition d’IRMd sont d’une
complexité impressionnante, et cela même pour un chercheur ayant une spécialisation

42

© François Rheault, 2020, PhD thesis



NEUROIMAGING DATA ANALYSIS: 
A BLUEPRINT FOR DIFFUSION MRI

1. Data acquisition

2. Data preprocessing

3. Single-subject 
analysis

4. Group-level 
analysis

5. Statistical inference

Aim: obtain good quality and consistent 
data

Diffusion sequence has different b-values and 
each image has a specific gradient direction. 
Data includes diffusion scan, bvec and bval vectors. 
Optimize protocol for research aim.

Aim: Reduce noise and prepare data 
for further analyses

Susceptibility-induced and eddy curents
distortions: correct for magnetic field 
inhomogeneities, eddy-induced currents, motion and 
signal loss. Requires careful checking.

Aim: Obtain measure of interest for 
each subject (often an image)

Image of different diffusion measures: Fractional 
anisotropy, Mean diffusivity, Axial diffusivity, 
Radial diffusivity, … Examples limited to DTI, other 
measure can be derived from other models.

Aim: Compare single-subject results 
across groups

Voxelwise analyses with images
Individual numerical values from regions of 
interest can be extracted

Aim: test reliability of results and 
generalizability to the general 
population

Comparisons between groups
Associations of  diffusion measures with other 
clinical data

Blueprint courtesy Ludovica Griffanti, University of Oxford



Diffusion in Python
dipy.org

SOFTWARE TO PROCESS DIFFUSION 
IMAGING

www.mrtrix.org

https://tractoflow-documentation.readthedocs.io/en/latest/

Basic preprocessing steps such as head-motion 
correction, susceptibility-derived distortion 

correction, eddy current correction, etc. providing 
outputs that can be easily submitted to a variety 

of diffusion models.

https://www.nipreps.org/dmriprep/index.html
dMRIprep

FSL 
Diffusion 
Toolbox



https://training.alz.org/Research-Webinars

TO LEARN MORE!



POP QUIZ!



What is the signal that is acquired on a diffusion MRI 
scan?

a) The orientation of white matter fibers
b) The movement of water molecules
c) The white matter density
d) All of the above

QUESTION 1
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What do the main preprocessing steps in diffusion MRI try 
to account for?
a) Eddy currents, movement, and registration
b) Susceptibility-induced distortions, movement and 

registration
c) Susceptibility-induced distortions, eddy currents and 

movement

QUESTION 2



What do the main preprocessing steps in diffusion MRI try 
to account for?
a) Eddy currents, movement, and registration
b) Susceptibility-induced distortions, movement and 

registration
c) Susceptibility-induced distortions, eddy currents 

and movement

QUESTION 2



On this map, what do the colors represent?

a) The strength of structural connectivity
b) Mean diffusivity
c) Length of the white matter fibers
d) The main direction of the white matter

fibers

QUESTION 3
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If we compare cognitively unimpaired participants to patients 
with AD dementia, the fractional anisotropy will be:
a) Lower in the AD patients
b) Lower in the cognitively unimpaired participants
c) Unchanged between the two groups

QUESTION 4
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