ALZHEIMER'S VS ASSOCIATION ALZHEIMER'S ASSOCIATION INTERNATIONAL CONFERENCE® AAIC>23 JULY 16-20 > AMSTERDAM, NETHERLANDS, AND ONLINE

ISTAART Neuroimaging PIA THE BASICS OF NEUROIMAGING SEMINAR SERIES

ISTAART Neuroimaging PIA The Basics of Neuroimaging Series

ALZHEIMER'S \bigcap **ASSOCIATION AAIC>23**

BASICS OF NEUROIMAGING STRUCTURAL MRI DR DAVID CASH

UCL QUEEN SQUARE INSTITUTE OF NEUROLOGY, LONDON, UK

ALZHEIMER'S Q ASSOCIATION' $AIC>23$ **GOALS**

By the end of this session, you should be able to:

- Identify the common structural MRI sequences and how they are used in dementia research
- Outline the basic preprocessing steps needed for structural MRI data and how to look for issues in the data and processing
- Differentiate the numerous applications of registration using structural MRI

ALZHEIMER'S **Q** ASSOCIATION[®] **NEUROIMAGING DATA ANALYSIS: AI BEDIGERINT FOR STRUCTURAL MRI**

Blueprint courtesy Ludovica Griffanti, University of Oxford

ALZHEIMER'S V ASSOCIATION AAIC>23 What can we measure with structural MRI?

ALZHEIMER'S Q ASSOCIATION'

MRI SEQUENCES AND WEIGHTINGS AAIC>23

T1-Weighted T2-Weighted T2-FLAIR \bigwedge Arterial Spin Labeling (ASL)

Diffusion-Weighted Imaging (DWI)

April 21 webinar

Slide courtesy Tobey Betthauser, Alexis Moscoso

Functional-MRI (fMRI)

April 26 webinar

Time

ALZHEIMER'S **Q** ASSOCIATION[®] **AAIC>23**

Structural MRI scans

- The MRI scanner can be tuned in different ways (**pulse sequences**), resulting in different contrasts
- Structural MRI sequences are sensitive to (or **weighted** by) one of three fundamental properties: **T1, T2, and T2* relaxation times**.
	- *Intensities are NOT quantitative measures of T1, T2, T2*.*
- **FLAIR** (FLuid Attenuated Inversion Recovery) is a T2 weighted sequence where we suppress CSF signal, so bright CSF voxels become dark

T1-weighted MRI

- High-resolution (~1 mm) information about **neuroanatomy** and **neurodegeneration**
- Can be acquired in any orientation in $~1$ -6 minutes
- Good contrast between different tissues (GM, WM, CSF)

ALZHEIMER'S **Q** ASSOCIATION[®] **223**

Atrophy on MRI relates to loss of neurons

Bobinski M et al. **The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer's disease**. *Neurosci* 95(3): 721-725. (1999)

For the definition of \mathcal{S}^{V} and \mathcal{S}^{V} and \mathcal{S}^{V} and \mathcal{S}^{V} and \mathcal{S}^{V} defined and the performance arteries are artes and artes are were assembly and articles are were were assembly highly variable in published work, and did not translate well to the top their appearance on interest and the set of the set decided to use the term arteriole to refer to small perforating arteries and arterioles that are aff ected in SVD. These standards are expected to reliably classify

T2, T2*, FLAIR TO TO* ELAID in the subcortical in indicating that MRI is not fully sensitive in the detection

referred to as a silent cerebral infarct. By contrast, for as

- \cdot Best sequence for detecting white matter hyperintensities (WMH) and other \vert \parallel vascular-related damage most manifestations of SVD seen on neuroimaging; seen on neuroimaging; seen on neuroimaging; seen on neuroimaging; see fates, evolving into a lacunar cavity or hyperintensity or might disappear leaving little visible consequence on conventional MRI (fi gure 1). Estimates of the proportional MRI (figure 1). Estimates of the proportion of the
- Provide complimentary information to T1 $\lvert \cdot \rvert$ Provide complimentary information $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$
- \cdot Clinical versions of these scans tend to have good in-plane resolution (≤1) mm) but thick slices (thick slabs of 3-5 mm)
	- **Readellef Subcortive matters** in Subcorting matter space of these scans space similar resolution to T1 scans

Comment

 $\frac{1}{2}$ Wardlaw Lancet Neurol 2013; 12: 822–38 Images courtesy Carole Sudre, UCL

What are the key processing steps?

ALZHEIMER'S V ASSOCIATION AAIC>23 Bias Correction

Bias correction: Has it worked?

Bias correction: Did it work?

- Assigns voxels to one of three main tissue classes
	- Grey matter (GM)
	- White matter (WM)
	- Cerebrospinal fluid (CSF)
- "Soft" segmentation each voxel contains the probability that it belongs to a class

ALZHEIMER'S **Q** ASSOCIATION[®] **AAIC>23**

- Assigns voxels to one of three main tissue classes
	- Grey matter (GM)
	- White matter (WM)
	- Cerebrospinal fluid (CSF)
- "Soft" segmentation each voxel contains the probability that it belongs to a class

- Assigns voxels to one of three main tissue classes
	- Grey matter (GM)
	- White matter (WM)
	- Cerebrospinal fluid (CSF)
- "Soft" segmentation each voxel contains the probability that it belongs to a class

- Assigns voxels to one of three main tissue classes
	- Grey matter (GM)
	- White matter (WM)
	- Cerebrospinal fluid (CSF)
- "Soft" segmentation each voxel contains the probability that it belongs to a class

Tissue segmentation: Did it work?

- Assigns voxels to one of three main tissue classes
	- Grey matter (GM)
	- White matter (WM)
	- Cerebrospinal fluid (CSF)
- "Soft" segmentation each voxel contains the probability that it belongs to a class

Cortical Thickness

Regional segmentation

Brain parcellation

- Rather than tissue types, assign voxels to anatomically defined structures in the brain
- Based on a single atlas or multiple subjects from a template database
- Helpful for regional statistics, both in T1 and multimodal studies
- Difficult to check each region in each image, look for obvious failures, volume outliers

IMAGE REGISTRATION

ALZHEIMER'S V ASSOCIATION ANCE 23 INTRODUCTION TO IMAGE REGISTRATION

ALZHEIMER'S **Q** ASSOCIATION[®] **AAIC>23**

Co-registration: Within subject, within session

- Structural T1 provides high-resolution anatomical context for other lower resolution modalities (fMRI, DWI, PET)
- Regions of interest (ROIs) defined on the structural T1 scan can be transferred to co-registered images
- Tissue properties from segmentation can also provide some information on partial volume effect (mixture of different tissues)

ALZHEIMER'S **Q** ASSOCIATION[®] **AAIC>23**

Longitudinal registration: within subject, between sessions

- Register baseline T1 with follow-up scans and measure differences
- More sensitive to disease-related atrophy than cross-sectional measures
- Abnormal rates of atrophy can be detected with scan intervals as small as six months apart (though longer intervals tend to be more reliable)
- Be careful! Check that changes in the images result from disease-related effects, not changes in acquisition (different parameters, movement)

MCI

MCI

MCI - AD

MCI - AD

ALZHEIMER'S Q ASSOCIATION' $AIC.23$

Longitudinal Registration: Treat all images equally

- Registering all follow-up images to baseline means that these images undergo more processing than the baseline scan
- This creates an asymmetry that results in biased measurements of atrophy
- Be sure to use a pipeline that treats all images equally, often creating a "halfway" or "midpoint" space between all timepoints so that all images are treated equally

ALZHEIMER'S **Q** ASSOCIATION[®] AAIC>23

Spatial Normalization: Between-subject

- Warping an individual scan(s) to a population atlas or template.
- After spatial normalization, the same anatomy is in the same area of the image
- The anatomy of every individual is unique, so it is not possible to exactly align images
- Spatially normalizing atlases are based on young, healthy adults to different populations (AD, Down's syndrome, older individuals) can result in greater error and bias

342 Participants - Original

342 Participants - Registered

ALZHEIMER'S **Q** ASSOCIATION[®] **Creating a study-specific template to reduce AAIC>23 errors in spatial normalisation**

ALZHEIMER'S **Q** ASSOCIATION[®] AAIL 223

Regional versus voxel/vertex analysis

VOXEL/VERTEX LEVEL

- Perform statistical tests (t-test, F-test, non-parametric) on each voxel/vertex
- Localizes changes to a very high resolution
- Not constrained by anatomical definitions
- Corrections needed for multiple comparisons to control for false positives – reduces sensitivity

REGIONAL LEVEL

- Conventional stats on volume
- Hard segmentation

Volume = voxel volume * (# voxels)

Soft segmentation

Volume = voxel volume $*\Sigma p(x)$

- Averaging over region reduces noise, increase SNR
- Volume differences more interpretable
- Can be performed in native or standard space

ALZHEIMER'S \bigcap **ASSOCIATION What have we learned about dementia from** AAIC>23 **structural MRI?**

Please see "Structural and Vascular Imaging" webinars at https://training.alz.org/Research-Webinars

Entorhinal Cortex and hippocampus are some of the earliest sites of atrophy in AD

Devanand *et al* **Neurology** 2007

ALZHEIMER'S **Q** ASSOCIATION[®] **223**

Hippocampal atrophy as a predictor for future decline

Apostolova **Arch Neurol** '06; De Carli **Arch Neurol** '07

Focal atrophy patterns helpful for differential diagnosis

Alzheimer's Disease

Frontotemporal dementia

Posterior Cortical Atrophy

Frontotemporal Dementia

Semantic Dementia

Semantic dementia: Ubi +ve, tau -ve

Adapted from Hedderish, et al., *European Radiology*, 2020

Neary *Lancet Neurol* 2005; Chan *Ann Neurol* 2001

ALZHEIMER'S **Q** ASSOCIATION[®] **EXT**

Longitudinal MRI detects atrophy before onset of symptoms

Thickness

Gordon et al, *Lancet Neurol.* 17(3):241-250, 2018

Kinnunen et al, *Alz & Dem.* 14(1):43-53, 2018

Vascular contributions to AD

Fiford Hippocampus 2017

ALZHEIMER'S **Q** ASSOCIATION[®]

AAIC>23

ALZHEIMER'S WASSOCIATION AAIC>23 POP QUIZ!

QUESTION 1

The earliest structure in the brain where atrophy can be detected is:

- a) Cerebellum
- b) Hippocampus
- c) Posterior Cingulate
- d) Entorhinal Cortex
- e) Fusiform Gyrus

ALZHEIMER'S **Q** ASSOCIATION[®] **AAIC>23**

QUESTION 2

The process of bias correction involves:

- a) Removing a slowly varying intensity inhomogeneity caused by small imperfections in the magnetic field
- b) Removes noise and differences across scanners
- c) Correct for systematic changes when comparing scans between different scanners

QUESTION 3

Which one of these statements is true about spatial normalization?

- a) It is important to get all of the image to line up exactly
- b) Study-specific templates that are representative of the participants in the study reduces potential errors
- c) Affine registrations are sufficient for spatial normalization.

ALZHEIMER'S Q ASSOCIATION® $AIZ3$

ISTAART Neuroimaging PIA

The Basics of Neuroimaging Series

@davecash75

Don't miss:

Basics of Neuroimaging: Data structure and formats by Ludovica Griffanti On demand at https://training.alz.org/

Next up: Basics of Neuroimaging: Positron emission tomography (PET) by Tobey Betthauser 19 April, 2023; 12PM - 1PM CT Basics of Neuroimaging: Diffusion-Weighted Imaging (DWI) by Alexa Pichet Binette 21 April, 2023; 9AM – 10AM CT Basics of Neuroimaging: Functional Magnetic Resonance Imaging (FMRI) by Luigi Lorenzini 26 April, 2023; 10AM – 11AM CT

GETTING STARTED WITH NEUROIMAGING WORKSHOP Friday July 14 8:00-12:00 Amsterdam

