ALZHEIMER'S QUASSOCIATION ALZHEIMER'S ASSOCIATION INTERNATIONAL CONFERENCE® JULY 16-20 > AMSTERDAM, NETHERLANDS, AND ONLINE

ISTAART Neuroimaging PIA THE BASICS OF NEUROIMAGING SEMINAR SERIES

ISTAART Neuroimaging PIA The Basics of Neuroimaging Series

ALZHEIMER'S RS ASSOCIATION

BASICS OF NEUROIMAGING DATA STRUCTURE AND FORMATS DR LUDOVCA GRIFFANTI

UNIVERSITY OF OXFORD, UK

By the end of this session you should be able to:

- Describe the main **properties of medical images**
- Identify the main **steps of a neuroimaging study**
- Understand how neuroimaging data are visualized at different steps of the analysis pipeline

ALZHEIMER'S **C** ASSOCIATION[®] **PROPERTIES OF MEDICAL IMAGING DATA** AAIC>23

im0

lim1 lim2 lim3 lim4

lim5

im6

lim7

atatvpe

byper

itpix

ixdim0

ixdiml

ixdim2

ixdim3

ixdim4

ixdim5

ixdim6

ixdim7

al max

al min

l slope inte

sub-0AS30015 ses-d2004 T1w.nii.gz slice dim slice⁻name Unknown izeof hdr 348 Header FL0AT32 slice⁻code ata_type slice^{_}star1 slice end 176 lice_duration 0.00000 256 0.000000 toffset 170 intent Unknowr intent code intent nam 0.00000 0.000000 intent p ntent p 0.000000 ox units form nam Scanner Anat ime units form cod 0.999466 -0.000520 -0.032767 -73.86032 to xvz: ato xvz:2 -0.000059 0.999844 -0.017685 -88.219193 0.032771 0.017677 0.999307 -94.454788 ato xvz:3 0.000000 0.000000 0.000000 1.000000 ato xvz:4 1.00000 Left-to-Right aform vorien .000003 Posterior-to-Anterior Inferior-to-Superior 00000 aform zorient Scanner Anat form name .000000 sform cod 2.400000 0.999466 -0.000520 -0.032767 -73.860321 -0.000059 0.999844 -0.017685 -88.219193 sto xvz:1 0.00000 sto xvz:2 0 00000 sto xvz:3 0.032771 0.017677 0.999307 -94.454788 0.000000 0.000000 0.000000 0.000000 1.000000 sto xyz:4 Left-to-Right sform xorien ox offset Posterior-to-Anterior sform vorient 0.000000 sform zorient Inferior-to-Superior NIFTI-1+ file type 6.0.5:9e026117 descrip 04530015 MR d2004

Image formats

"Raw" Scanner File Format **Example: DICOM**

DICOM to NIFTI conversion (e.g. dcm2niix)

Analysis File Format Example: NIfTI (Neuroimaging Informatics Technology **I**nitiative)

ALZHEIMER'S N ASSOCIATION ALZHEIMER'S N ASSOCIATION PROPERTIES OF MEDICAL IMAGING DATA

Image = cube of numbers

ALZHEIMER'S N ASSOCIATION ALZHEIMER'S N ASSOCIATION PROPERTIES OF MEDICAL IMAGING DATA

Image = cube of numbers

Q slices

VOXEL (volumetric pixel)

Image resolution = voxel size in mm

ALZHEIMER'S () ASSOCIATION ALZHEIMER'S () ASSOCIATION PROPERTIES OF MEDICAL IMAGING DATA

Coordinate systems

© Software Carpentry https://carpentries-incubator.github.io/SDC-BIDS-IntroMRI/index.html

ALZHEIMER'S PLASSOCIATION ALZHEIMER'S PLASSOCIATION IMAGE COORDINATES & IMAGE REGISTRATION

ALZHEIMER'S () ASSOCIATION ALZHEIMER'S () ASSOCIATION IMAGE COORDINATES & IMAGE REGISTRATION

ALZHEIMER'S DASSOCIATION ALZHEIMER'S DASSOCIATION IMAGE COORDINATES & IMAGE REGISTRATION

ALZHEIMER'S N ASSOCIATION

- <u>Registration</u>: the process of aligning images so that the same voxel in the image corresponds to the same anatomical location in the brain. (i.e. finding a one-to-one map between all points in one image and another)
- **Terminology** varies depending on software and type of transformation applied to the images (Synonyms: coregistration, alignment, normalization)

- Input Image
- Moving Image
- Source Image
- Deformed Image

- Reference image
- Stationary Image
- Target Image
- Fixed Image

ALZHEIMER'S **C** ASSOCIATION[®] INTRODUCTION TO IMAGE REGISTRATION

Within-subject & session

Betweenmodalities

Within-subject,

between sessions

Scheltens et al., 2002

Longitudinal data, change over time

Between-subjects

Template / Standard space = "average brain" used as reference

Motion

ALZHEIMER'S DASSOCIATION AAIC 23 INTRODUCTION TO IMAGE REGISTRATION

"Average brain"

MNI152 Template Space

Atlases

Template / Standard space = "average brain" used as reference

ALZHEIMER'S OCIATION NEUROIMAGING DATA ANALYSIS: AAIC223 A GENERIC BLUEPRINT

ALZHEIMER'S OG ASSOCIATION ALZHEIMER'S ASSO

- Neuroimaging experiments usually generate multiple **images and non-imaging data**.
- So far there is no consensus how to organize and share data obtained in neuroimaging experiments
- BIDS is a framework for organizing data.
 Standardizes file names and folders hierarchy organization and dataset description.

https://bids.neuroimaging.io

ALZHEIMER'S RUASSOCIATION ALZHEIMER'S RUSSOCIATION ALZHE

xy

xyz

MRIQC - https://mriqc.readthedocs.io/en/latest/about.html

CAT12 - https://neuro-jena.github.io/cat/index.html#QC

EDDY-QC (FSL) - https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddyqc/UsersGuide

ALZHEIMER'S RUASSOCIATION NEUROIMAGING DATA VISUALIZATION: QUALITY CONTROL

0.0

0.0

xyz

MRIQC - https://mriqc.readthedocs.io/en/latest/about.html CAT12 - https://neuro-jena.github.io/cat/index.html#QC

EDDY-QC (FSL) - https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddyqc/UsersGuide

ALZHEIMER'S OUASSOCIATION AAI 223 NEUROIMAGING DATA VISUALIZATION: SINGLE SUBJECT OUTPUT

Images	Label/Region of interest (ROI)/ Parcel	Continuous measure
Volumetric		

Images from: Miller et al., Nat Neurosci. 2016; FreeSurfer tutorial; Wang et al., PlosONE 2013

ALZHEIMER'S OUASSOCIATION ALZHEIMER'S OUASSOCIATION ALZHEIMER'S OUASSOCIATION ALZHEIMER'S OUASSOCIATION NEUROIMAGING DATA VISUALIZATION: SINGLE SUBJECT OUTPUT

Numbers a.k.a. Imaging Derived Phenotypes (IDPs)

White matter lesion load

Brain structure volume

Connection strength

ALZHEIMER'S OUASSOCIATION ALZHEIMER'S OUASSOCIA

- Numbers fed into 'classic' stats software (R, SPSS, STATA, python...)
- Images require specific stats (usually within imaging software tools)
- Input = single subject output, registered to a template
- Statistical maps in pseudocolours shows significant voxels (volumetric) or vertices (surface), overlaid on template.
- Atlases can help interpreting results

ALZHEIMER'S OLASSOCIATION ALZHEIMER'S OLASSOCIA

Douaud et al., JNeurosci 2013

Zamboni et al., Biol Psych. 2013

ALZHEIMER'S OU ASSOCIATION ALZHEIMER'S ALZHEIMER'S OU ASSOCIATION ALZHEIMER'S ASSO

1. Getting started

4. Viewing Atlases

2. Viewing multiple images

3.	Image
inf	ormation

ALZHEIMER'S N ASSOCIATION

ISTAART Neuroimaging PIA The Basics of Neuroimaging Series

THANK YOU!

@ludogriffanti

ludovica.griffanti@psych.ox.ac.uk

Next up: Basics of Neuroimaging: Structural Magnetic Resonance Imaging (MRI) by David Cash 14 April, 2023; 9AM – 10AM CT Basics of Neuroimaging: Positron emission tomography (PET) by Tobey Betthauser 19 April, 2023; 12PM - 1PM CT Basics of Neuroimaging: Diffusion-Weighted Imaging (DWI) by Alexa Pichet Binette 21 April, 2023; 9AM – 10AM CT Basics of Neuroimaging: Functional Magnetic Resonance Imaging (FMRI) by Luigi Lorenzini 26 April, 2023; 10AM – 11AM CT

